
5/2/0

TYPICAL APPLICATIONS

- ➤ Local Area Networks (LANs)
- ➤ Optical Sensors
- ➤ Medical Instruments
- ➤ Automotive Displays
- ➤ Audio Systems
- ➤ Electronic Games
- ➤ Robotics Communications
- ➤ Fiber Optic Modems
- ➤ Fluorescent Instruments
- ➤ Wavelength Multiplexing

DESCRIPTION

The IF-E93 is a high-output, high-speed, green LED housed in a "connector-less" style plastic fiber optic package. The output spectrum of the green LED is produced by a Gallium Nitride die which peaks at a wavelength of 530 nm, ideally mapping to the lowest attenuation window of PMMA plastic core optical fiber. The device package features an internal LED micro-lens, and the PBT plastic housing ensures efficient optical coupling with standard 1000 μ m core plastic fiber cable.

APPLICATION HIGHLIGHTS

The high output and fast transition times of the IF-E93 make it suitable for low-cost digital data links. When coupled to PMMA plastic optical fiber, attenuation is less than .1 dB/m, as compared to .16 dB/m with commonly used 650 nm LEDs. Using standard 1 mm core plastic fiber, the IF-E93 LED is capable of distances in excess of 150 meters at data rates of 5 Mbps. The fast rise and fall times of the IF-E93 permit data rates up to 30 Mbps. The drive circuit design is simpler than required for laser diodes, making the IF-E93 a good, low-cost alternative in a variety of analog and digital applications.

FEATURES

- ◆ Ultra-Low Loss in Plastic Optical Fiber
- ◆ No Optical Design Required
- Mates with Standard 1000 μm Core Jacketed Plastic Fiber Cable
- ◆ Internal Micro-Lens for Efficient Coupling
- ◆ Inexpensive Plastic Connector Housing
- ◆ Connector-Less Fiber Termination and Connection
- ◆ Interference-Free Transmission from Light-Tight Housing
- ◆ Visible Light Output
- ◆ Fast Rise and Fall Times
- ◆ RoHS Compliant

MAXIMUM RATINGS

 $(T_A=25^{\circ}C)$

Operating and Storage Temperature Range (T_{OP}, T_{STG}) 40° to 60°C
Junction Temperature (T $_J)$ 85 $^{\circ}\text{C}$
Soldering Temperature (2 mm from case bottom) $(T_S) t \le 5 s$ 240°C
Reverse Voltage (V_R)
Power Dissipation (P_{TOT}) T_A =25°C60 mW
De-rate Above 25°C1.1 mW/°C
Forward Current, DC (I $_{F})$ 35 mA
Surge Current (I_{FSM}) t \leq 10 μ s

CHARACTERISTICS $(T_A=25^{\circ}C)$

Parameter	Symbol	Min.	Тур.	Max.	Unit
Peak Wavelength	λ_{PEAK}		530		nm
Spectral Bandwidth (50% of I _{MAX})	Δλ	-	50	-	nm
Output Power Coupled into Plastic Fiber (1 mm core diameter). Distance Lens to Fiber ≤0.1 mm, 1 m SH4001 fiber, I _F =20 mA	$\Phi_{ ext{min}}$	95 -10.2	115 -9.4	135 -8.7	μW dBm
Switching Times (10% to 90% and 90% to 10%) (F=33 MHz, I_F =10 mA) See Figure 3	t _r , t _f	-	3.5, 16	-	ns
Capacitance (V _F =0, F=1 MHz)	C ₀	-	100	-	pF
Forward Voltage (I _F =20 mA)	V _f	-	3.5	-	V
Temperature Coefficient, λ_{PEAK}	TC_{λ}		.17		nm/K

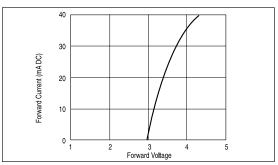


FIGURE 1. Forward current vs. forward voltage.

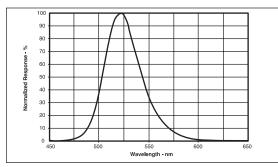


FIGURE 2. Typical spectral output vs. wavelength.

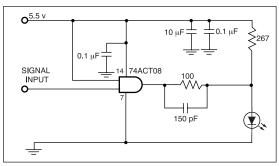


FIGURE 3. Test drive circuit ($I_F = 22mA$).

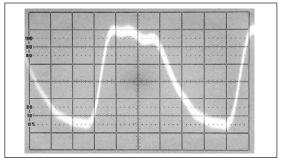
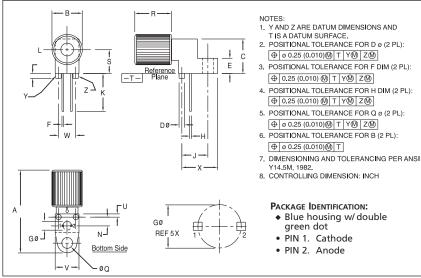



FIGURE 4. Transition times - Sweep = 5nS/div.

- PACKAGE IDENTIFICATION: ◆ Blue housing w/ double green dot
- PIN 1. Cathode
- PIN 2. Anode

T IS A DATUM SURFACE.

⊕ ø 0.25 (0.010)M T YM ZM

⊕ 0.25 (0.010) M T YM ZM

⊕ 0.25 (0.010) M T YM ZM

⊕ ø 0.25 (0.010)M T YM ZM

⊕ ø 0.25 (0.010)M T

Y14.5M. 1982.

	MILLIMETERS		INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	23.24	25.27	.915	.995	
В	8.64	9.14	.340	.360	
С	9.91	10.41	.390	.410	
D	1.52	1.63	.060	.064	
Е	4.19	4.70	.165	.185	
F	0.43	0.58	.017	.023	
G	2.54 BSC		.100 BSC		
Н	0.43	0.58	.017	.023	
J	7.62 BSC		.300 BSC		
К	10.35	11.87	.408	.468	
L	1.14	1.65	.045	.065	
N	2.54	BSC	.100 BSC		
Q	3.05	3.30	.120	.130	
R	10.48	10.99	.413	.433	
S	6.98 BSC		.275 BSC		
U	0.83	1.06	.032	.042	
V	7.49	7.75	.295	.305	
w	5.08 BSC		.200 BSC		
Х	10.10	10.68	.397	.427	

FIGURE 5. Case Outline.